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We know that such small-scale quantum 

computers can already perform computation 

faster than classical computers (e.g., random 

quantum circuits, boson sampling, …)

Quantum “Supremacy”

Task: compute the output of a

          random quantum circuit

          acting on 53 qubits

Nature 574, 461-462 (2019)

Can quantum computers perform useful 

computations faster for classical computers? not really “useful” computational tasks…



✓ Integer Factoring (Shor algorithm)

✓Quantum search (Grover algorithm)

✓Quantum distributed computing

✓Problems with quantum inputs

✓Quantum annealing

✓Adiabatic algorithms

✓QAOA

✓VQA

✓Quantum machine learning

Heuristic
Provable advantage       

… …

merit: theoretical guarantees of the quantum advantage

demerit: generally requires quantum error-correction 

and thus large-scale quantum computers

demerit: generally few theoretical guarantees

(performance needs to be analyzed on real data)

merit: can be implemented on NISQ devices

Quantum Advantage for useful tasks

This talk: a survey of other examples of quantum algorithms with provable 

advantage (including several of my favorite examples) 

(most problems in quantum information theory)
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Compute the product of two n x n matrices A and B

× =n

n

n

n

n

n

Trivial classical algorithm: O(n3) time cij = ෍

𝑘=1

𝑛

aikbkj for all 1 ≤ i ≤ n and 1 ≤ j ≤ n 

aij bij
cij

One of the most fundamental computational tasks in 

science and engineering 

Matrix Multiplication

Best known classical algorithm: O(n2.38) time  [Coppersmith and Winograd 87]



[LG 12] [Jeffery, Kothari, LG, Magniez 16] [Jeffery, LG 16]

sparsity of the output matrix 

(number of non-zero entries)

running time

n

n2

n2.38

n2n n2n2/31 n1.779n1.2

best classical algorithms

n1.5

[Jeffery, Kothari, LG, Magniez 16]

quantum algorithms

Quantum search + 
combinatorial ideas

Quantum Algorithms for Matrix Multiplication

Quantum advantage for large sparse matrices! Quantum advantage for many graph problems

Issue: in practice, is an O(n1.5)-time quantum algorithm faster that an O(n2.2)-time classical algorithm?  

n2.2

(this depends on the architecture and the constant hidden in the big-O notation)
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Given two strings X and Y of length n, compute their similarity

example: file comparison

                DNA comparison length: 3 billion

Best known classical algorithm:  O(n) time (optimal)

Quantum algorithms: O(n5/6) time [LG and Seddighin 21] O(n2/3) time [Akmal and Jin 22]

proved 

advantage

length: several MB 

length of the longest common substringone standard definition

How to define the similarity?  

New topic in quantum 
algorithms

Quantum String Algorithms

Issue: in practice, is an O(n2/3)-time quantum algorithm faster that an O(n)-time classical algorithm?  

(also depends on the implementation of Quantum Random Access Memory)

Grover search, amplitude amplification, quantum walks
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What about convex optimization?

convex optimization, especially linear programs (LP) and semidefinite 

programs (SDPs), has a wide range of applications, rigorous guarantees, 

and can be solved efficiently by classical solvers

Quantum Optimization

✓Quantum search (Grover algorithm)

✓Quantum walks

✓Backtracking

✓Quantum annealing

✓Adiabatic algorithms

✓QAOA

✓VQA

✓Quantum machine learning

Heuristic

…

…

Provable advantage



Best classical algorithm for SDPs

O(n2.5 (log(1/ε))5)  [Jiang et al. 20]

Quantum algorithms for SDPs

O(n (1/ε)18)   [Brandao and Svore 16]

O(n (1/ε)8)    [van Aperdoon et al. 17]

O( n (1/ε)5)      [van Aperdoon and Gilyen 18]

O( n (1/ε)12)     [Brandao et al. 18]

n: number of variables

ε: precision of the solution

Significant improvement if we 

only need low precision

For huge systems (millions of variables) this can be the only way to get a rough approximation of 

the solution in reasonable time

Potentially wide 
impact

Convex Optimization
SDP: Semidefinite Programs
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Potential very wide impact, but need better 

understanding of quantum architectures to 

estimate the running time in practice  
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HHL Algorithm for System of Equations

Theorem ([Harrow, Hassidim, Lloyd 09])

There is a quantum algorithm that computes a good approximation of | ۧx  in time polynomial in log(n)

[Harrow, Hassidim, Lloyd 09]

Input：

✓ A sparse and well-conditioned n x n matrix A

✓ A unit-norm vector b ∈  ℂ  given as a quantum state | ۧb

Output:

An approximation of the quantum state | ۧx

write x = A−1b and   x =
A−1b
A−1b

solution of: Ax = b

Classically, the best known algorithm solving sparse and well-conditioned 

systems of linear equations uses O(n) time

exponentially faster

sparse: at most O(log n) non-zero entries 

per row and column

well-conditioned: eigenvalues of AA  in 

[-1, -poly(1/log n)] ∪ [poly(1/log n), 1]

n



✓ Main issue: the solution is output as a quantum state

“extract statistics about the solution x”

✓ Possible applications of the HHL Algorithm: estimate ۦx|M| ۧx  for some operator M

Applications to quantum machine learning ?  very promising but hard to analyze the performance

Theorem [Harrow, Hassidim, Lloyd 09]: Estimating ۦx|M| ۧx  is BQP-hard. 

(i.e., as hard as simulating an arbitrary quantum circuit)

HHL Algorithm for System of Equations [Harrow, Hassidim, Lloyd 09]

Needed: killer 
application



✓ Main issue: the solution is output as a quantum state

“extract statistics about the solution x”

✓ Possible applications of the HHL Algorithm: estimate ۦx|M| ۧx  for some operator M

• performance on (large) real-data: need a large quantum computer 

• theoretical investigations: there exist a few quantum machine learning 

algorithms with rigorous analysis … but most of them have been “dequantized”  
      [Tang 19]  [Chia, Gilyen, Li, Lin, Tang, and Wang 2020] 

Needed: killer 
application

Applications to quantum machine learning ?  very promising but hard to analyze the performance

HHL Algorithm for System of Equations [Harrow, Hassidim, Lloyd 09]

Theorem [Harrow, Hassidim, Lloyd 09]: Estimating ۦx|M| ۧx  is BQP-hard. 

(i.e., as hard as simulating an arbitrary quantum circuit)
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Quantum Machine Learning
[Gilyen, Su, Low, Wiebe 2020]

If the vectors are given as quantum states, then we can use the SWAP test.

| ۧ0

| ۧ𝑢

| ۧ𝑣

The probability of measuring 1 is  
1

2
−

1

2
𝑢|𝑣 2

Repeating the SWAP test O(1/ε2) times gives an 

estimate of the (absolute value of the) inner product 

with additive error O(ε)  

Given two unit-norm vectors 𝑢, 𝑣 ∈  ℝ𝑛, compute an approximation of their inner product.

Many quantum machine learning algorithms solve the following task (either as a main routine or a subroutine):

Gilyen, Su, Low, Wiebe. Quantum singular value transformation and beyond: exponential improvements 

for quantum matrix arithmetics. 2019

Do we have quantum advantage?

For several machine learning problems (e.g., recommendation systems or supervised clustering ) the states can be created efficiently 
from the data using the Quantum Singular Value Transformation [Gilyen, Su, Low, Wiebe 2020]

independent of n !



Tang’s paradigm: if we assume access to | ۧ𝑢  (and |𝑣) in the quantum setting, we should 

assume length-squared access to 𝑢 (and 𝑣) in the classical setting

Dequantization of the Inner Product Part

Given two unit-norm vectors 𝑢, 𝑣 ∈  ℝ𝑛, compute an approximation of their inner product.

Assumption in the classical setting: length-squared access to 𝑢 

✓ for 𝑖 ∈ 1, … , 𝑛 , we can obtain 𝑢𝑖 in O(log n) time

✓ we can in O(log n) time sample one index 𝑖 ∈ {1, … , 𝑛} from the following distribution 𝑝𝑢

𝑝𝑢 𝑖 = 𝑢𝑖
2 for all 𝑖 ∈ {1, … , 𝑛}𝑝𝑢: 1, . . 𝑛 ⟶ [0,1]

concept introduced in the 1990s in works 
on “randomized linear algebra”

same distribution as when measuring | ۧ𝑢 = ෍

𝑖=1

𝑛

𝑢𝑖| ۧ𝑖

[Tang 2019]



Dequantization of the Inner Product Part

Assumption in the classical setting: length-squared access to 𝑢 (and also to 𝑣): 

✓ for 𝑖 ∈ 1, … , 𝑛 , we can obtain 𝑢𝑖 in O(log n) time

𝑝𝑢 𝑖 = 𝑢𝑖
2 for all 𝑖 ∈ {1, … , 𝑛}𝑝𝑢: 1, . . 𝑛 ⟶ [0,1]

Dequantized algorithm:  sample an index 𝑖 ∈ 1, … , 𝑛  according to 𝑝𝑢 and output the value 𝑣𝑖/𝑢𝑖

Variance: small

Expectation of the output: ෍

𝑖=1

𝑛

𝑝𝑢(𝑖)
𝑣𝑖

𝑢𝑖
= ෍

𝑖=1

𝑛

𝑢𝑖
2

𝑣𝑖

𝑢𝑖
= ෍

𝑖=1

𝑛

𝑢𝑖𝑣𝑖 = 𝑢|𝑣

repeating a small number of times and taking 

the mean gives a good estimate of 𝑢|𝑣  
No quantum advantage!

[Tang 2019]

Given two unit-norm vectors 𝑢, 𝑣 ∈  ℝ𝑛, compute an approximation of their inner product.

✓ we can in O(log n) time sample one index 𝑖 ∈ {1, … , 𝑛} from the following distribution 𝑝𝑢



Quantum Machine Learning

If the vectors are given as quantum states, then we can use the SWAP test.

| ۧ0

| ۧ𝑢

| ۧ𝑣

The probability of measuring 1 is  
1

2
−

1

2
𝑢|𝑣 2

Repeating the SWAP test O(1/ε2) times gives an 

estimate of the inner product with additive error O(ε)  

Given two unit-norm vectors 𝑢, 𝑣 ∈  ℝ𝑛, compute an approximation of their inner product.

Many quantum machine learning algorithms solve the following task (either as a main routine or a subroutine):

Gilyen, Su, Low, Wiebe. Quantum singular value transformation and beyond: exponential improvements 

for quantum matrix arithmetics. 2019

Do we have quantum advantage?

For several machine learning problems (e.g., recommendation systems or supervised clustering ) the states 
can be created efficiently from the data using the Quantum Singular Value Transformation.

Assume quantum access to the data

[Gilyen, Su, Low, Wiebe 2020]



Full Dequantization

If the vectors are given as quantum states, then we can use the SWAP test.

| ۧ0

| ۧ𝑢

| ۧ𝑣

The probability of measuring 1 is  
1

2
−

1

2
𝑢|𝑣 2

Repeating the SWAP test O(1/ε2) times gives an 

estimate of the inner product with additive error O(ε)  

Given two unit-norm vectors 𝑢, 𝑣 ∈  ℝ𝑛, compute an approximation of their inner product.

Many quantum machine learning algorithms solve the following task (either as a main routine or a subroutine):

Gilyen, Su, Low, Wiebe. Quantum singular value transformation and beyond: exponential improvements 

for quantum matrix arithmetics. 2019

Do we have quantum advantage?

For several machine learning problems (e.g., recommendation systems or supervised clustering ) the states 
can be created efficiently from the data using the Quantum Singular Value Transformation.

Assume we have length-squared access to the data

no quantum advantage here

length-squared access to those vectors can be implemented 

efficiently using the methods from the 1990s 

[Chia, Gilyen, Li, Lin, Tang, and Wang 2020]

[Tang 2019]

Assume quantum access to the data



Robust Dequantization of Quantum Machine Learning [LG 2023]

Given two unit-norm vectors 𝑢, 𝑣 ∈  ℝ𝑛, compute an approximation of their inner product.

Assumption in the classical setting: approximate length-squared access to 𝑢 

✓ for 𝑖 ∈ 1, … , 𝑛 , we can obtain 𝑢𝑖 in O(log n) time

✓ we can in O(log n) time sample 𝑖 ∈ {1, … , 𝑛} from a distribution ෦ 𝑝𝑢 close to 𝑝𝑢 in total variation distance:

Tentative algorithm:  sample an index 𝑖 ∈ 1, … , 𝑛  according to ෦ 𝑝𝑢 and output the value 𝑣𝑖/𝑢𝑖

Expectation of the output: ෍

𝑖=1

𝑛

෦ 𝑝𝑢(𝑖)
𝑣𝑖

𝑢𝑖
≉ ෍

𝑖=1

𝑛

 𝑝𝑢 𝑖  
𝑣𝑖

𝑢𝑖
= 𝑢|𝑣

෍

𝑖=1

𝑛

෦ 𝑝𝑢(𝑖) − 𝑝𝑢 (𝑖) < 10−6

doesn’t work anymore!

On the other, the SWAP test on | ۧ෤𝑢  and | ۧ𝑣  where | ۧ𝑢 − | ۧ෤𝑢 < 10−6 gives an estimate of ෤𝑢|𝑣 ≈ 𝑢|𝑣

Do we have a quantum advantage? No, all known quantum machine learning algorithms can be 

dequantized in this setting as well [LG 2023]

(problem when 𝑢𝑖 small but ෦ 𝑝𝑢(𝑖) large)   

𝑢𝑖
2
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Space-efficient Equation Solving [Ta-Shma 2013]

The HHL algorithm enables us to approximate the quantum state | ۧx  in time polynomial in log n 

x =
A−1b

A−1b

There exists a quantum algorithm that solves the above problem using O(log n) space 

(i.e., O(log n) bits and O(log n) qubits of memory) and poly(n) time.

Theorem ([Ta-Shma 2013]):

No o(n)-space poly(n)-time classical algorithm is known 
exponentially improvement in 

the space requirements!

proof idea repeat poly(n) times:   apply HHL and measure its output (which is close to | ۧx ) in some

Input： ✓ a sparse and well-conditioned n x n matrix A

✓ a unit-norm vector b ∈  ℂ

✓ an index i ∈ {1,…,n}

Output： a good approximation of the i-th coordinate of the vector x = A−1b

n

This problem is complete for 

logspace quantum 

computation 

[Fefferman-Lin 2016]

appropriate basis gives a random coordinate of x
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Computing the ground energy of a quantum system is hard even for quantum computers

Computational Quantum Chemistry

Given a rough approximation of the ground state (e.g., using Hartree–Fock in quantum chemistry), 

 the ground energy can be estimated with high precision efficiently with a quantum computer

[Gharibian and LG 2022] [Cade, Folkertsma, Gharibian, Hayakawa, LG, Morimae and Weggemans 2023]

result #1:   Given a rough approximation of the ground state, computing the ground energy with 

high precision is hard for classical computers

result #2:  Given a rough approximation of the ground state, computing the ground energy with 

constant precision can be done efficiently classically 

This shows the superiority of quantum algorithms

Very promising application

This shows the quantum advantage comes from the improved precision

“The local Hamiltonian problem is QMA-hard” [Kempe, Kitaev and Regev 2004]



Computing the ground energy of a quantum system is hard even for quantum computers

Formalization: the Guided Local Hamiltonian Problem

Given a rough approximation of the ground state (e.g., using Hartree–Fock in quantum chemistry), 

 the ground energy can be estimated with high precision efficiently with a quantum computer

“The local Hamiltonian problem is QMA-hard” [Kempe, Kitaev and Regev 2004]

k ≥ 1 : locality parameter

δ ∈ (0,1] : overlap parameter

ε ∈ (0,1] : precision parameter

λH: ground energy (i.e., smallest eigenvalue) of H

input: ① an k-local Hamiltonian H acting on n qubits such that H  ≤ 1

          ② an n-qubit quantum state | ۧu

promise: | ۧu  has overlap at least δ with the ground state of H

output: an estimate ሚλ such that | ሚλ - λH | ≤ ε

GLH(k,ε,δ) “Guided local Hamiltonian problem”

Formalizes the main computational task solved by quantum algorithms for quantum chemistry

For any k ≤ log(n) any δ ≥1/poly(n) and any ε ≥1/poly(n), the problem 

GLH(k,ε,δ) can be solved in poly(n)-time with a quantum computer. 

Theorem (prior works):



The problem GLH(k,ε,δ) is BQP-hard 

for k = 2, ε = 1/poly(n) and δ ≈ 1.  
Formal statement:
[Gharibian and LG 2022]

For any k ≤ log(n) and any constant δ and any constant ε > 0, the problem 

GLH(s,ε,δ) can be solved in poly(n)-time with a classical computer. 

k ≥ 1 : nb. of qubits on which each term of H acts

δ ∈ (0,1] : overlap between |uۧ and the ground state 

ε ∈ (0,1] : precision parameter

n: number of qubits

(H: 2n x 2n matrix)  

“as hard as simulating an arbitrary quantum circuit”

GHL: our Results

Theorem (prior works):

result #1:   Given a rough approximation of the ground state, computing the ground energy with 

high precision is hard for classical computers

This shows the superiority of quantum algorithms

Formal statement:
[Gharibian and LG 2022]

result #2:   Given a rough approximation of the ground state, computing the ground energy with 

constant precision can be done efficiently classically 

This shows the quantum advantage comes from the improved precision

[Cade, Folkertsma, Gharibian, 

Hayakawa, LG, Morimae and 

Weggemans 2023]

For any k ≤ log(n) any δ ≥1/poly(n) and any ε ≥1/poly(n), the problem 

GLH(k,ε,δ) can be solved in poly(n)-time with a quantum computer. 
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Potential very wide impact, but need better 

understanding of quantum architectures to 

estimate the running time in practice  

Need more convincing applications

Some of the most convincing 

examples of quantum advantage



Perspectives

Most pressing questions:

✓Find more applications of quantum computers, and especially more provable 

exponential speedups

Thank you for your attention!

✓Build theoretical foundations for the advantage of “quantum heuristic algorithms”
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